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ABSTRACT

A metiiod for direct numerical evaluation of the cumulative probability
distribution function from the characteristic function in terms of a single
integral is presented, No moment evaluations or series expansions are re-
quired, Intermeliate evaluation of the probability density function is cir-
cumvented, The method takes on a special form when the random variables
are discrete,
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NUMERICAL EVALUATION OF CUMULATIVE PROBABILITY
DISTRIBUTION FUNCTIONS DIRECTLY FROM
CHARACTERISTIC FUNCTIONS

INTRODUCTION

When several independent random variables are added, the
characteristic function of the sum is the product of the characteristic functions
of the individual random variables, This rule holds regardless of the distri-
butions of the individual random variables, and whether they are identically
distributed or not, Evaluation of the cumulative probability distribution of the
sum variable in closed form is often very tedious or impossible to achieve,
This is especially so when the number of random variables added is large, but
not large enough to employ the Central Limit Theorein with accuracy.

In many signal-detection problems, the characteristic function of the
decision variable can be derived in closed form (or evaluated numerically
fairly easily). Often, however, neither the probability density function of the
decision variable, nor its integral, the cumulative probability distribution
function, can be obtained in closed form, Even if they can, they are frequently
tedious and time-consuming to evaluate (see, for example, Marcuml), In this
report, we present a technique for numerically evaluating cumulative probability
distribution functions directly from specified characteristic functions in terms
of a single integral, Intermediate evaluations of the probability density func-
tions are not necessary, and no moment evaluations or series expansions are
required, The technique takes on a special form when the decision variable is
discrete.

When the characteristic function of the decision variable (which is com-
pared with a threshold) can be evaluated for both the signal-present and signal-
absent cases, the technique can be applied to the problem of obtaining receiver
operating characteristics (probability of detection versus probability of false
alarm),

ANALYSIS

This section is composed of two subsections, In the first, a general
formula for direct evaluation of the cumulative probability distribution function
{rom the characteristic function is derived; in the second, an alternate and
more useful form for discrete random variables is presented.
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GENERAL DISTRIBUTIONS

Let random variable x have probability density function (PDF) p(x) and
characteristic function (CF) f(§):

1) = [ dxexp it b, )
and T

Px) =5 f de exp (-ikx) ). @)

(An integral without limits is over the real axis from -« to +x,)

The cumulative distribution function (CDF) Pr@X) is defined as the
probability that random variable X is less than or equal to X:

X+
PrX =fdxp(x). (3)

The upper limit means that an impulse in PDF p(x) at x =X is to be included
in full, It will be convenient to define the modified distribution function (MDF):

PE) =fdx pX), @)

where an impulse in p(x) at x =X is only half included. At points of
continuity of the CDF, Pr(X) and P(X) are equal, At a point of discontinuity
of the CDF, the MDF P(X) takes on a value halfway between the limit values
on either side of the discontinuity,2 The CDF Pr(X) can be obtained from the
MDF P(X) via

Pr&X) = lim PX+¢), (5)
€0+

Therefore, we can direct our effort to evaluating either the CDF Pr(X) or the
MDF P(X), depending on which is more convenient,




When Eq. (2) is substituted into Eq. (4), we note that the MDF

becomes3
1
fdxz—;/df exp (-iéx) £ (¢)
L faet /x dx exp (-1£x)

PX)

- %fdf (£) [me) - % exp (—iém]

RN SO
-5 5 [ T Hio e i, (6)

where the last integral is a principal value integral. Since the PDF p(x) is
real, the real part of the CF f({) is even, and the imaginary part of the CF
f(¢) is odd; i.e., f(-¢)=f*(¢). This allows Eq. (6) to be manipulated into the
forms

1 1 fd
P® = 7-+ [F mif®em 0}
0

3-% [ [mito}cos 6D - Reft)}smem] . @
0

Convergence of the integrals' at the origin is guaranteed by the fact that

tfwia integrable at the origin if ¥>-1. No moments of the distribution
are required to exist.




Im{f0)} = 0 8)
and

nmﬂ“—éﬁﬁ - X 9)

0

Equation (7) is the general equation allowing numerical evaluation of the
MDF P{X) directly from the CF f(f). For a discontinuous CDF, in order to
minimize inaccuracies in a numerical evaluation of Eq, (7), values of the MDF
PX) at points removed from the discontinuity locations (if known) should be
computed. In particular, for a discrete random varieble, values of the MDF
at points midway between discontinuities should be computed when using|

Eq. (7).
The integral in Eq, (7) is confined to the real axis, Since
|1)] < f dxp(x)=1 for § real, (10)

there are no singular points along the { axis, Also some CF's are defined
only for ¢ real; for example, for

pm) =+, an
14x
f(€) = W("fl)o real §, (12)

but £(¢) is not defined for complex . Thus, the CF {(f) does not have to be
analytic at the origin to apply Eq, (7). Nor do any momentis of the random

DISCRETE DISTRIBUTIONS

The expression (7) applies to all MDF's (and CDF's through Eq. {8));
however, it requires an infinite integral for each value of X, Here we shall
alleviate this requirement for a special class of random variables. Namely, we
consider discrete random variables that can only take on values which are
multiples of some findamental increment 4, That is, the PDF of interest
takes the form

px) = § o, $ix-ka). 13)




(A sum without limits is over the integers from -« to +«,) Then the CF is

i) = Lo, exp (kag), (14)
k

which is periodic with period 2x/A, Therefore, the coefficients *ck} can be
determined from the CF f({) by

o =35 J dremeiantw, (15)
2r/a

where the integral is over any interval of length 2#/A,

Equation (15) gives the area of any impulse in the PDF p(x) in terms of
a finite integral of the CF £(¢). Since we are interested in the CDF Pr(X), a
sum over {cy| is required. At this point, it is convenient to distinguish two
cases: (1) nonnegative discrete random variables and (2) general discrete
random variables,

NONNEGATIVE DISCRETE RANDCM VARIABLES

If x is a nonnegative discrete random variable, the CDF s, at integer
value M,

n

A M
Pr(M) 'g ° = 3% fdf £(€) ) , exp (~tkAf), M20, (16)
2z

where we have substituted Eq. (15). Now




which must be interpreted as M+ 1 at ¢ =0, +2x/4, +4x/4, ... . Using
Eq. (17) and the fact that f(-§) = f*(¢), we note that Eq, (16) becomes

A sin |(M+1)A£/2!
N = e— -iMA
Pr(M) >e /Adf () exp (-1MAE/2) oo [26/2]
2r

®/A
_ A sin [(M+1)A¢/2
=< a/-df ain Avir—] Re{f(()exp(-lMAE/Z)}. M>0, (18)

where the interval (-x/A, »/4) has been selected for integration. The ratio
of sines is interpreted as M +1 at the origin £ = 0. Equation (18) is a
single finite integral from whi.h the CDF Pr(M) can be evaluated at any M
directly from the CF {(¢).

A special case of Eq, (18) is
r/A
Pr(0)=c0=Af df Re {f(5)} . (19)
0

r

(Actually, o, is always given by this formula, even for general discrete
random variables, as may be seea from the general formula (Eq. (15)).) ‘

The case of a discrete random variable taking on values in a semi-
i{nfinite range (i.e.. (-« N) or (N,»), where N is finite but can be positive
or negative) can be handled in a similar fashion, The key is that a finite sum of
exponentials (like Eq. (17)) can be evaluated without requiring a summation,

GENERAL DISCRETE RANDOM VARIABLES

Here we shail consider discrete random variables which can take on
values in the range ( ~«w, w), From Eqs, (7), (4), and (13),

o0
PO =3-5 [ $m it 20)
0 .
-} 1
-2 ek+~2-c° @1)
k=-w




That is, the value of the MDF P(X) at the origin can be evaluated by a single
infinite integral, There does not seem to be any simpler way of obtaining this
number, which will be necessary in the development to follow., In some cases,
it may be possible to evaluate the particular value P(0) from the integral

Eq. (20) in closed form, or expand it in a rapidly convergent series, while
P(X) could not be so evaluated generally for X # 0, In any event, Eq. (20} will
be the only infinite integral necessary to evaiuate in order to get the complete
CDF for this general discrete case.

The area of the impulse at the origin ie given by Eq, (15) as

A r/A
¢, =7 f dt Re {£(8)} . @22)
0

Now let us define auxiliary functions

M
s+(M)=Z% ¢ M20, 23)
0 |
S (M) = Z:M . M>0, (24)
. o %

By a development siimilar to Eqs, (16) through (18), we find that these auxiliary
functions can be expressed directly in terms of the CF {{!) as

/A
- 0 .

where the ratio of sinas {s interpreted as M +1 at the origin =0,
The CDF Pr(M) then can be evaluated at any M according to

1
P(O)-=¢c_ +8 (M), M>0
Pr(M) = 20 +

PO) +3c_ - 8_({M+il), M<o] . @6)




Here P(0) is given by Eq. /20), ¢, by Eq. (22), and S4+(M) by Eq. (25), The
constants P(0) and cy need be evaluated once, but Eq. (25) must be evaluated
for each M of interest, However, Eq. (25) is a finite integral.

EXAMPLES

We shall consider two examples recently examined by Helsi:ro»m4 for
purposes of comparison,

Example 1 - Exponential Distribution

F2xp (=X}, x>0
DY) =
]

0, x<0 @7)
1- exp ('X)n xzo
Pr(X) = P(X) -={
. 0, X<0/, (28)
~1
f(§) = Q-if) ", @9)

The exact CDF is given in Eq. (28), Approximate values for the CDF are
obtained by substituting Eq, (29) into Eq. (7) and approximating the infinite
integral by a finite sum. Results are indicated in Table 1,

The integral of Eq, (7; was sampled in ¢ at values indicated by column
four of Table 1 and approximated by the trapezoidal :ule for integration, The
limit of integration in Eq. (7) was taken to be the value above 60 where the
finite sum deviat~1 most from the exact answer., Thus, the finite su.n in
column three of Table 1 is the worst approximation to the exact answer in
colamn two,

F..r this example, the largest error occurred at the origin, This
happened because the integrand of Eq, (7) oscillates for X# 0, thereby con-
verglay fajvly rapidly, whereas the integrand decreases monotonically only as
(1 +£2)1 forX=o0,




Table 1

NUMERICAL COMPUTATION OF EXPONENTIAL DISTRIBUTION

Finite Sum Increment Approximate Limit
X Pr{X) via Eq, (7) in of Integration
-10 0 . 00001 o1 60
-2 0 -, 00007 5 60
-1 0 . 90008 oD 60
0 0 00532 ¢S 60
2 . 18127 . 18096 . 60
1 . 63212 . 63220 ed 60
2 . 864866 .86470 oD 60
10 . 9999546 . 9999637 o1 60
Example 2 - Poisson Distribution
-] xk
pix) = expl-)) P A six-k), @30)
k=0 k!
M )\k
exp(-\) E ﬁ » M>90
Pr(M) = k=0
0, M<0}\} , (31)
f(§) = exp[Mexpt)>-1}] . (82)

The exact CDF is given in Eq. (31). Approximate values for the CDF are
obtained by substituting Eq. (32) into Eq, (18), with A =1, and approximating
the finite integral by a finite sum, Results are indicated in Table 2,
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Table 2
NUMERICAL COMPUTATION OF PNISSON DISTRIBUTION

Number of
M Pr(M) Finite Sum via Eq, (18) Intervals
0 ,00000 03059 .00000 03059 25
1 . 00000 48944 .00000 48945 25
6 .00763 18996 .00763 18998 25
14 .46565 37089 ,46565 37089 25
16 .66412 32005 .66412 32004 25
20 .91702 90899 .91702 90895 25
29 .99958 15502 .99958 15500 25
30 .99980 26867 .99980 26865 25
40 .99999 99765 .99999 99764 25

The integral of Eq. (18) was divided into 25 equal intervals and approxi-
mated by the trapezoidal rule for integration, Columns two and three of Table 2
show that the error in the approximation occurs in the tenth place (and may be
due to computer inaccuracies rather than sampling errors). Also, the
accuracy holds on the tails of the CDF as well as near the mean,

CONCLUSIONS

The numerical technique suggested for obtaining CDF's directly from

CF's has considerable merit, It requires no moment evaluations or series
expansions (like Edgeworth or Laguerre) for the distributions, It does not de-
pend upon evaluation of derivatives of CF's, but depends only upon the values of
the CF itself, (Evaluation of high-order derivatives can be extremely tedious
and time-consuming even if an analytic form for the CF is available,) The
accuracy of the suggested technique can be estimated and controlled by de-
creasing the increment in the integral evaluations or lengthening the interval of

10




integration or both; the change in the approximation is a measure of the error
at that point, The method does not require an inordinate number of samples of
the CF, at least for the examples considered, and the additional functions
requiring evaluation are sines and cosines, Intermediate evaluation of the
PDY is entirely circumvented. (Of course, estimates of the PDF are avail-
able as differences of the CDF, if desired.)
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